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Relativity in Clifford’s Geometric Algebras
of Space and Spacetime

William E. Baylis1,3 and Garret Sobczyk2

Of the various formalisms developed to treat relativistic phenomena, those based on
Clifford’s geometric algebra are especially well adapted for clear geometric interpreta-
tions and computational efficiency. Here we study relationships between formulations
of special relativity in the spacetime algebra (STA) C�1,3 of the underlying Minkowski
vector space, and in the algebra of physical space (APS) C�3. STA lends itself to
an absolute formulation of relativity, in which paths, fields, and other physical prop-
erties have observer-independent representations. Descriptions in APS are related by
a one-to-one mapping of elements from APS to the even subalgebra STA+ of STA.
With this mapping, reversion in APS corresponds to hermitian conjugation in STA.
The elements of STA+ are all that is needed to calculate physically measurable quan-
tities (called measurables) because only they entail the observer dependence inherent
in any physical measurement. As a consequence, every relativistic physical process
that can be modeled in STA also has a representation in APS, and vice versa. In the
presence of two or more inertial observers, two versions of APS present themselves.
In the absolute version, both the mapping to STA+ and hermitian conjugation are ob-
server dependent, and the proper basis vectors of any observer are persistent vectors
that sweep out time-like planes in spacetime. To compare measurements by different
inertial observers in APS, we express them in the proper algebraic basis of a sin-
gle observer. This leads to the relative version of APS, which can be related to STA
by assigning every inertial observer in STA to a single absolute frame in STA. The
equivalence of inertial observers makes this permissible. The mapping and hermitian
conjugation are then the same for all observers. Relative APS gives a covariant represen-
tation of relativistic physics with spacetime multivectors represented by multiparavec-
tors in APS. We relate the two versions of APS as consistent models within the same
algebra.
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1. INTRODUCTION

Clifford’s geometric algebra offers a powerful unifying language for the study
of physics (Hestenes, 1966, 1999, 2003; Hestenes and Sobczyk, 1984; Baylis,
1996; Lounesto, 2001; Abl�amowicz and Sobczyk, 2003; Snygg, 1997; Gürlebeck
and Sprössig, 1997; Doran and Lasenby, 2003). Relativistic problems can be treated
efficiently both in the spacetime algebra (STA) (Hestenes, 1974, 2003), the Clifford
algebra C�1,3 of Minkowski spacetime, and in the algebra of physical space (APS)
(Hestenes, 1999; Baylis, 1980, 1989, 1999), the Clifford algebra C�3 of three-
dimensional Euclidean physical space. Both STA and APS give geometric for-
mulations of relativistic phenomena that emphasize symmetries both in spacetime
and in physical space, combining the power of a covariant representation with the
intuitive simplicity of spatial vectors while avoiding matrices and tensors. Both
also provide spinor and projector tools without the clutter of multiple component
indices. As real algebras, STA operates in a linear space of 16 dimensions, whereas
the linear space of APS has eight dimensions. APS can also be viewed as the four-
dimensional algebra of complex paravectors (Sobczyk, 1981a,b), and it is also
isomorphic to complex quaternions, which have a long history of applications in
relativity (Siberstein, 1912; Conway, 1912), but whose geometrical interpretation
is less obvious.

The connection between STA and APS highlights an important relation, only
rarely explicitly expressed, between the basis vectors in Newtonian mechanics
and those of special relativity. Newtonian basis vectors are usually viewed as
unit displacement vectors in physical space that persist in time. Relativistically,
such persistent vectors are associated with “time-like” bivectors (bivectors with
positive squares, see later) representing planes that are swept out in spacetime by a
given spatial direction with the passage of time. Under boosts, time-like bivectors
transform into spacetime bivectors that have picked up spatial bivector parts (with
negative squares), and the corresponding Newtonian basis vectors transform into
a mixture of a spatial vector and a spatial bivector (a plane).

The formulation of relativity in STA can be characterized as absolute, in that
physical paths, fields, and other properties of objects are expressed independent
of any observer. The formulation in APS can be either absolute (Sobczyk, 1981a)
or relative (Baylis, 1980, 1999; Baylis and Jones, 1989). In both APS versions,
the relationship between APS and STA+ is expressed as an algebra isomorphism
together with an operation called hermitian conjugation. Hermitian conjugation,
identified with reversion in APS, separates elements of APS into real and imaginary
parts, the real part consisting of scalars and vectors (elements of grades 0 and 1), and
the imaginary part consisting of pseudoscalars (trivectors) and bivectors (elements
of grades 3 and 2).

If we consider only one inertial observer, the two APS versions are equivalent.
In the absolute APS approach, one posits a distinct absolute frame and hermitian
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conjugation for each observer, so that the reality and the grading of the elements
of APS are observer dependent. The relative APS approach can be related to STA
by assuming that all observers use a single absolute inertial frame in STA to form
their proper basis. Since all inertial frames in STA are equivalent, each inertial
observer can identify her frame with the chosen inertial frame. In this way, the
same hermitian conjugation is used for all observers. The relative APS formula-
tion admits a covariant formulation, of critical importance to physicists, in which
real paravectors are naturally associated with spacetime vectors and higher par-
avector grades represent other covariant geometrical objects in spacetime. While
its formulation and justification (Baylis, 1996, 1999) does not depend on STA,
its connection to STA+ clearly shows the relationship between the conceptually
different relative and absolute approaches.

In the following sections, we first review APS and STA, and then construct
APS from the even subalgebra STA+ of STA. The formulation of APS is ob-
tained initially for a single observer. This part is largely a review of previous work
(Hestenes, 1974) but is included here for completeness. The connections become
more convoluted when additional observers are added, as we investigate first in
the absolute version of APS. We then see how, through the relation of measurable
coefficients of covariant spacetime elements, we are led to the relative version.
We can recover STA from APS by formulating relations in the proper basis of
a single inertial observer in APS assigned to the absolute frame of STA. From
these relationships, we conclude that every physical process formulated in STA
can equally well be described in APS.

2. REVIEW OF APS

We present here a brief summary of the use of APS to model relativistic
phenomena. More details can be found elsewhere (Baylis, 1996, 1999). The ele-
ments of APS are the real vectors u, v, w of physical space R

3 and all their sums
and products uu, uv + uvw, . . .. The elements of APS form an associative algebra
under addition and multiplication. We will see later in the formulation of APS as
STA+ that the concept of a vector is itself, implicitly, relative to an observer.

The square of any vector u ∈ AP S is defined as its length squared

u2 ≡ uu = u · u, (1)

where u · u is the usual inner product. This axiom, together with the usual rules
for adding and multiplying square matrices, determines the entire algebra. If we
put u = v + w, the axiom implies

vw + wv = 2v · w. (2)

Evidently, the algebra is not commutative and, in particular, the product of per-
pendicular vectors is anticommutative uv = −vu. It is called a bivector and has a
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geometric interpretation as the oriented plane containing u and v. Let {e1, e2, e3}
be an orthonormal basis of R

3. The Corollary (2) implies that

e j ek + eke j = 2δ jk , (3)

where the Kronecker delta δ jk gives the Euclidean metric of physical space. For
example, e2

1 = 1 and e1e2 = −e2e1. The bivector e1e2, a multivector of grade 2,
represents a directed area in the plane of the vectors. Its “direction” corresponds
to circulation in the plane: if the circulation is reversed, the sign of the bivector
is reversed. The bivector replaces the (Gibbs–Heaviside) vector cross product of
polar vectors, but unlike the usual cross product, it is intrinsic to the plane and can
be applied to planes in spaces of any number of dimensions.

The unit bivector e1e2 squares to

(e1e2)2 = −e2e1e1e2 = −1 (4)

and generates rotations and reflections in the plane of e1 and e2. A general vector
v, with components both in the plane and perpendicular to it, is rotated through
the angle φ in the e1e2 plane by

v → RvR†, (5)

where the rotors R, R† are

R = exp(−e1e2φ/2) = cos
φ

2
− e1e2 sin

φ

2
(6)

R† = cos
φ

2
− (e1e2)† sin

φ

2
= cos

φ

2
− e2e1 sin

φ

2
= R−1. (7)

The dagger † used earlier denotes the conjugation of reversion, which reverses
the order of vectors in all products. Thus, for any vector v, v† = v, and the reversion
of a product, say AB, of arbitrary elements can be found from (AB)† = B†A†. (A
tilde ˜ is used in STA to indicate reversion, but when we associate APS with the
even subalgebra STA+ of STA we require distinct symbols.) In spaces of definite
metric such as Euclidean spaces, one commonly represents the basis vectors by
hermitian matrices. The dagger then corresponds to hermitian conjugation and can
be used to split elements into “real” (hermitian) and “imaginary” (antihermitian)
parts:

A = 〈A〉� + 〈A〉� (8)

A〉� = A + A†

2
, 〈A〉� = A − A†

2
. (9)

The standard basis of APS over the reals can be specified by

{1, e1, e2, e3, e2e3, e3e1, e1e2, e1e2e3},
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where the trivector e1e2e3 squares to −1. In APS, e1e2e3 is the volume element,
also known as the unit pseudoscalar. It commutes with every vector and hence
with all elements and can therefore be identified with the unit imaginary:

e1e2e3 = i. (10)

The center of APS (the part that commutes with all elements) is spanned by {1, i}
and is identified with the complex field. Bivectors can be identified as imaginary
vectors (pseudovectors) in APS. For example, e1e2 = e1e2e3e3 = ie3. We can now
take the set

{1, e1, e2, e3}
as the standard basis of APS over the complex scalars.

The sum of a real scalar and a real vector is called a paravector. A typical
paravector p can be expanded

p = p0 + p = pµeµ, (11)

where, for notational convenience in using the compact Einstein summation con-
vention, we put e0 = 1. The convention is that repeated lower-case Greek indices
are summed over 0, 1, 2, 3, whereas repeated lower-case Latin indices are summed
over the spatial values 1, 2, 3. Every element in APS can be expressed as a complex
paravector. Reversion (the dagger conjugation) complex-conjugates the complex
coefficients and thus changes the sign of the pseudoscalar and pseudovector parts.
Real paravector space is a four-dimensional linear space spanned by the basis
{e0, e1, e2, e3} over the reals.

Just as for complex numbers, a natural quadratic form in paravector space is
given by

Q(p) = p p̄, (12)

where p̄ = p0 − p is called the Clifford conjugate of p. Clifford conjugation is
extended to general elements A, B, of APS as an antiautomorphism: AB = B̄ Ā.
It conveniently splits elements into scalar-like (S) and vector-like (V) parts:

A = 〈A〉S + 〈A〉V (13)

〈A〉S = A + Ā

2
, 〈A〉V = A − Ā

2
. (14)

The quadratic form (12) is scalar-like. Through it, paravector space inherits from
the Euclidean metric of the underlying space of spatial vectors an inner product
with the Minkowski spacetime metric:

(p, q) = 〈pq̄〉S = pq̄ + q p̄

2
= pµqνηµν (15)
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with the metric tensor

ηµν = 〈eµēν〉S =



1, µ = ν = 0

−1, µ = ν = 1, 2, 3
0, µ �= ν

. (16)

The appearance of the Minkowski spacetime metric suggests the use of real
paravectors to model vectors in four-dimensional spacetime. Oriented planes in
spacetime are then modeled by biparavectors (Baylis, 1999) such as 〈pq̄〉V =
pµqν〈eµēν〉V, which represents the plane containing all linear combinations of the
real paravectors p and q , and which generally has both real (vector) and imaginary
(bivector) parts. Rotations in paravector space are generated by biparavectors and
leave the quadratic form (and hence inner products) of paravectors invariant. They
represent physical Lorentz transformations. Rotations of the paravector p in a
single spacetime plane have the form

p → LpL†, (17)

where L is a Lorentz rotor of the form L = exp(W/2) and W is a biparavector for
the plane of rotation. In the special case that W is imaginary, L is a spatial rotation,
and in the special case that it is real, L is a boost (or hyperbolic rotation). More
generally, any Lorentz rotor L can be factored into the product L = B R of a spatial
rotation R and a boost B. This form is pursued later in the relative formulation
of APS.

3. REVIEW OF STA

STA, introduced by Hestenes (1966, 1974), is the geometric algebra C�1,3 of
Minkowski spacetime. Minkowski spacetime has a pseudo-Euclidean metric that
highlights the intrinsic difference between time and space. The aspects of STA
presented here are those needed in our discussion later. Since APS can be equated
to the even subalgebra of STA, particular attention is paid to this subalgebra. Each
abstract inertial frame of STA consists of a constant four-dimensional orthonormal
vector basis {γ0, γ1, γ2, γ3} ≡ {γµ} satisfying

γµγν + γνγµ = 2ηµν , (18)

where ηµν are elements (16) of the Minkowski spacetime metric tensor.
The history (worldline) of an idealized point particle P is a time-like curve

rP(τ P) giving its position in STA as a function of a scalar parameter τ P, which we
take to be its proper time. The tangent vector uP = drP/dτ P is its proper velocity
(in units with c = 1). In a commoving frame (an inertial frame instantaneously
moving with the observer) {γ P

µ } of the particle, the displacement has only a time
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component:

drP = γ P
0 dτ P,

and the commoving unit time axis γ P
0 is thus seen to be coincident with the proper

velocity: uP = γ P
0 .

The spacetime curve rP(τ P) and its tangent vector uP are abstract and do not,
by themselves, determine physically measurable values. They are independent of
the observer and therefore unchanged by passive transformations (transformations
of the observer). For this reason Hestenes (2003) calls such spacetime quantities
invariant. However, they do transform under active Lorentz rotations, and to avoid
possible confusion with Lorentz scalars, which are invariant under both passive
and active transformations, we prefer to call them absolute. Physically measurable
quantities (“measurables”), on the other hand, are either Lorentz invariants or
are derived from vector components relative to the observer. As we show later,
these are determined by even elements of STA.

An inertial observer, say Alice, can be idealized as a congruence of parallel
histories rA(τA), all with the same given proper velocity uA = drA/dτA with
duA/dτA = 0 and a constant commoving frame {γ A

µ } with γ A
0 = uA. When Alice

measures physical quantities represented by geometric objects such as vectors, she
normally expresses them in her frame {γ A

µ } of spacetime basis vectors. The γ A
µ

are abstract, and it is the scalar coefficients of the expansion that constitute the
measurables for Alice. A different observer, say Bob, has his own frame {γ B

µ } with
γ B

0 = uB that he normally uses for measurements. We assume that the handedness
of the two frames is the same:

γ A
0 γ A

1 γ A
2 γ A

3 = γ B
0 γ B

1 γ B
2 γ B

3 ≡ I,

where the pseudoscalar I of STA anticommutes with vectors.
Any two inertial frames of the same handedness are related by a Lorentz

rotation, also known as a restricted (proper orthochronous) Lorentz transformation,
and specified by a rotor L . Every Lorentz rotation can be expressed as the product
of a spatial rotation and a boost (a velocity transformation). There is in particular
a rotor L that relates Alice’s frame to Bob’s:

γ B
µ = Lγ A

µ L̃ , (19)

where ˜ indicates reversion in STA. Lorentz rotors are unimodular:

L L̃ = 1, (20)

and consequently all products of spacetime vectors transform in the same way in
STA. For µ = 0, the transformation (19) relates the proper velocities

γ B
0 = uB = Lγ A

0 L̃ = LuA L̃. (21)
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It is common to define hermitian conjugation of any element K for Alice by

K †A = γ A
0 K̃γ A

0 . (22)

The conjugation symbol †A is used here instead of the more usual † to underscore
its dependence on the observer’s frame. In terms of the hermitian conjugate, the
proper velocities are related by

γ B
0 = uB = L L†Aγ A

0 = L L†AuA

L L†A = γ B
0 γ A

0 = uBuA, (23)

where we noted from (18) that (γ A
0 )2 = 1. If the frames of Alice and Bob are related

by a pure spatial rotation, their time axes and hence proper velocities uB and uA

are equal and L†A = L̃ = L†B. On the other hand, if their frames are related by
a pure boost, then L†A = L = L†B and L2 = γ B

0 γ A
0 = uBuA. In the most general

case, the Lorentz rotor L is the product of boost and spatial-rotation rotors, and
L L†A is simply the square of the boost rotor.

A boost along the γ A
1 direction is a Lorentz rotation generated by the STA

bivector γ A
10 ≡ γ A

1 γ A
0 , and it has the form exp(wγ A

10/2), where the scalar parameter
w is called the rapidity of the boost. We can expand the exponential to get for the
rotor L

L2 = exp
(
wγ A

10

) = γ (1 + v) = uBuA, (24)

where γ ≡ cosh w is the Lorentz time dilation factor between the observers, and
v = γ A

10 tanh w gives the relative coordinate velocity of Bob with respect to Al-
ice. The coordinate velocity of Alice as seen by Bob is −v. The plane of the
Lorentz rotation is itself invariant under L: γ B

10 = Lγ A
10 L̃ = γ A

10, and γ and |v| are
measurables for both Alice and Bob.

We want to compare measurements made by Alice and Bob of an absolute
spacetime vector, which for concreteness we take to be the spacetime position r .
(Since r depends on the origin of coordinates, in order that this transform under
fixed L as a spacetime vector, we must assume that the origins of Alice’s and Bob’s
frames coincide. Alternatively, we could replace r by an affine spacetime vector.)
Thus, r might be one point on the history of a point particle or some other event.
It can be expanded in the basis vectors of any inertial frame, for example in the
frame {γ A

µ } of Alice:

r = rµ

Aγ A
µ . (25)

As emphasized earlier, the spacetime vectors r and γ A
ν are abstract and not

directly measurable; it is the scalar coefficients rµ

A that Alice can measure. The
time component of r measured by Alice is

tA ≡ r0
A = r · γ A

0 . (26)
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More generally, the spacetime vector r relative to Alice is given by the expansion

rγ A
0 = rµ

Aγ A
µ γ A

0 ≡ rA = tA + rA, (27)

where the spacetime bivector rA = r ∧ γ A
0 = rk

Aγ A
k0 ∈ STA+, with γ A

k0 ≡ γ A
k γ A

0 ,
is interpreted in APS as the spatial position vector from the origin to the particle
that Alice measures. The even element rA = rγ A

0 is called the relative position,
and its expansion (27) is called a space–time split (Hestenes, 1974, 2003).

Analogous relations can be written for Bob’s measurables. The relative posi-
tions rA = rγ A

0 and rB = rγ B
0 are related by the passive Lorentz rotation

rB = rγ B
0 = r Lγ A

0 L̃ = rγ A
0 L̃†A L̃

= rA L̃†A L̃. (28)

The inverse transformation can be written

rA = rBL L†A = rBL†BL , (29)

where

L†B = γ B
0 L̃γ B

0 = Lγ A
0 L̃ L̃ Lγ A

0 L̃ = L L†A L̃.

A different form of transformation results by boosting the event r for a given
observer. This is an example of an active transformation, in which the observer is
fixed and the event is transformed. Let

r ′ = Lr L̃. (30)

This boost changes the relative position with respect to Alice according to

r ′
A = r ′γ A

0 = r ′µ
A γ A

µ γ A
0 = Lr L̃γ A

0 = Lrγ A
0 L†A

= LrAL†A. (31)

If both of these transformations are performed together (the order is not important
when the same rotor is used for both) we obtain the relative spacetime position of
the transformed event with respect to Bob:

r ′
B = r ′γ B

0 = Lrγ A
0 L̃ = Lrµ

Aγ A
µ γ A

0 L̃

= LrA L̃. (32)

The three transformations of measurables (28), (31), (32) have distinct forms.
In the transformation (32), in which both the observer and the event are boosted by
the same amount, the unimodularity of L (20) implies that the time measurements
are the same: t ′

B = tA, but the positions generally differ

r′
B = r ′k

B γ B
k0 = LrA L̃ = Lr j

Aγ A
j0 L̃. (33)

How are the three transformations to be interpreted physically?
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3.1. Measurables in STA

To understand the physical interpretation of the earlier equations, it is impor-
tant to note that all of the measurables have been expressed in terms of elements
of STA+, the even subalgebra of STA, spanned by the basis {1, γµν , I }, where
the basis bivectors in STA are γµν ≡ 1

2 (γµγν − γνγµ) with 0 ≤ µ < ν ≤ 3. The
reason for this is that every physical measurement of a vector is relative and in-
volves two absolute spacetime vectors: the absolute vector of the event or property
being measured and a basis vector of the reference frame used by the observer.
The results of the measurement depend on the orientation and motion of one with
respect to the other.

Of course it is most common for an observer to employ a reference frame
at relative rest. Measurements can then be expressed in STA+ in the observer-
dependent proper basis

{
σ A

µ = γ A
µ γ A

0

} {
σ B

µ = γ B
µ γ B

0

}
(34)

The bases are called proper because they are based on the absolute frames that are
at rest with respect to the observer. The basis element representing the time axis
in the relative frame is in each case unity:

σ A
0 = 1 = σ B

0

and the spatial elements are spacetime bivectors σk = γk0 = γkγ0 representing
planes containing both the spatial direction γk and the time direction γ0. These
are the planes swept out by the unit spatial vector γk in one unit of time. They are
the spacetime planes representing persistent spatial vectors in physical space. The
relation between the relative basis vectors is

σ B
µ = Lσ A

µ L̃ (35)

for µ = 0, 1, 2, 3, which follows directly from γ B
µ = Lγ A

µ L̃ and L L̃ = 1. We will
return to the meaning of this transformation later.

In terms of these proper bases, the three transformations (28), (31), and (32)
are

rA → rB = rµ

B σ B
µ = rA L̃†A L̃ passive

rA → r ′
A = r ′µ

A σ A
µ = LrAL†A active

rA → r ′
B = r ′µ

B σ B
µ = LrA L̃ both.

(36)

The measurables for Alice are the scalar coefficients rµ

A and r ′µ
A , and for Bob, they

are rµ

B and r ′µ
B . We can relate them using the orthogonality of the basis vectors.

For example, for the passive case,

rµ

B = r ν
A

〈
σ A

ν L̃†A L̃σ B
µ

〉
S = r ν

A

〈
σ A

ν L̃†Aσ A
µ L̃

〉
S (37)
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However, the relations are most transparently seen if the transformations (36)
are expressed in terms of a proper basis of a single observer. If we insert the
transformation (35) into (36), we find

rµ

B σ A
µ = r ν

A L̃σ A
ν L̃†A = L̃rA L̃†A passive

r ′µ
A σ A

µ = r ν
ALσ A

ν L†A = LrAL†A active

r ′µ
B σ A

µ = r ν
Aσ A

ν = rA both.

(38)

Note that the active and passive transformations (38) have similar forms
but with inverse rotors. They demonstrate in particular that under either active or
passive boosts, time and space components are mixed and time intervals (and hence
clock rates) change. The last relation of (38) shows that when both the event and
the observer are transformed by the same rotor, the components are unchanged:

r ′µ
B = rµ

A . (39)

In other words, the spacetime vector r ′ measured by Bob has the same com-
ponents as r measured by Alice.

Notice that σ A
k and σ B

k , for k = 1, 2, 3, are time-like bivectors when expressed
in the frames {γ A

µ } and {γ B
µ }, respectively, of STA. In the next section, we will

reinterpret the σ A
k to be the persistent vectors of a single, absolute inertial frame,

and study the resulting geometric algebra, which is isomorphic to Cl3.

4. APS AS STA+

Since APS is isomorphic to the even subalgebra of STA, we can derive the
relativistic formalism for APS by equating the basis vectors ek of APS to the
appropriate elements of STA+. For Alice, we have

ek = σ A
k = γ A

k0, k = 1, 2, 3. (40)

These three orthonormal vectors satisfy the axiom (3) and generate both APS and
STA+. The identification (40) associates the three spatial basis vectors of APS
with time-like bivectors of STA. This reinforces the concept of persistent vectors
in APS that sweep out time-like planes in STA. Since σ A

0 = 1, we can extend the
identification (40) to Alice’s proper paravector basis {eµ = σ A

µ } with

eµ = σ A
µ = γ A

µ γ A
0 , µ = 0, 1, 2, 3. (41)

From this identification, the volume elements of APS and STA are

i = e1e2e3 = σ A
1 σ A

2 σ A
3 = γ A

10γ
A
20γ

A
30 = γ A

0 γ A
1 γ A

2 γ A
3 = I.

As in STA, the volume element of APS squares to −1, but whereas in STA I
anticommutes with all vectors, in both APS and STA+ the volume element is part
of the center of the algebra, that is, it commutes with all elements.
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Clifford conjugation in APS corresponds to reversion in STA+

ē0 = e0 = 1 = 1̃

ēk = −ek = −γ A
k0 = γ̃ A

k0,

and it follows that Clifford conjugation of an observer’s proper basis is the same
for every observer. Reversion in APS is equivalent to Alice’s hermitian (dagger)
conjugation (22) in STA+, and it follows that the proper basis vectors eµ are real
as seen by Alice:

e†µ = σ †A
µ = γ A

0 σ̃ A
µ γ A

0 = eµ.

The Equations (36) for Lorentz rotations in STA+ are unchanged in APS
except that, for Alice, σ A

µ is replaced by eµ. The proper basis vectors σ B
µ used

by Bob, given by (35), are seen by Alice to be complex. This can be understood,
as mentioned earlier, as the result of transforming the time-like planes swept out
by persistent vectors in time, and it reflects the action of the six-parameter group
SL(2, C) of Lorentz rotors, which mix time-like and space-like planes in space-
time. Such planes correspond respectively to vectors and bivectors in APS. The
fact that Alice sees Bob’s frame as complex presents no physical problem because
the definition of proper hermitian conjugation (22) depends on the observer and
ensures that each observer sees her own proper basis vectors as real (Sobczyk,
1981b).

Indeed the mapping (41) between APS and STA+ is observer dependent, and
while Alice takes the proper basis vectors ek of APS to be her time-like bivectors
σ A

k in STA+, Bob equates them to his bivectors σ B
k . Just as under Alice’s hermitian

conjugation, Bob’s proper basis vectors σ B
k are complex whereas hers are real,

under Bob’s conjugation, it is Alice’s σ A
k that are complex and his are real. By

allowing both the mapping between APS and STA+ and hermitian conjugation to
vary with observer, this formulation of APS is thus able to treat all observers on an
equal footing. The proper vector basis used by any observer in this formulation,
like the bivector basis in STA to which it is equated, is absolute and distinct from
the bases used by other observers who are in relative motion. We therefore refer
to this formulation of APS as absolute.

The important relations in relativity, however, are not the way one observer
sees another observer’s proper basis, but how the real, scalar values measured by
one observer are related to those measured by another. Such relations are given by
the transformations (38), and these suggest a relative formulation of APS.

4.1. Covariant Multiparavectors

While any collection of real vector components on the basis {e0, e1, e2, e3}
defines a real paravector, only some such collections transform together under
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Lorentz rotations as a spacetime vector. Those that do are said to be covariant.
Furthermore, a spatial vector in APS may be part of a spacetime vector, whose
components transform according to (38), or it may be part of a spacetime bivector,
whose components transform differently. For example, the proper acceleration
du/dτ of a point particle is a spatial vector in the commoving inertial frame, and
it transforms as in (38) earlier. However, the electric field E is also a pure vector,
but it transforms distinctly. In fact, it transforms as a persistent vector and may
be seen by a different observer as having both real vector (electric) and imaginary
vector or bivector (magnetic) parts. Its basis expansion in APS is simply

E = Ek
Aσ A

k

for Alice, and naively applying the arguments made for the position vector rA, it
would be seen by Bob (using his proper conjugation) to be real and to pick up a
scalar part. It would remain real because Bob’s proper conjugation is different from
Alice’s, and the difference exactly compensates the generation of the imaginary
part.

This, however, is wrong. There is no meaning to a scalar part of the electro-
magnetic field, and Bob really sees a magnetic (imaginary) component to the field.
What is missing is a recognition that the proper acceleration and the electric-field
vector belong to different types of covariant objects and therefore transform dif-
ferently under Lorentz rotations. The proper acceleration is part of a spacetime
vector whereas the electric field is part of a spacetime bivector F representing the
electromagnetic field.

Alice and Bob see different electric and magnetic components of the given
electromagnetic field F because their hermitian conjugations are different. Thus,

F = 1

2
(F + F†A) + 1

2
(F − F†A) = EA + iBA

= 1

2
(F + F†B) + 1

2
(F − F†B) = EB + iBB

To relate the measurables, that is the actual field components measured by
Alice and Bob, we expand the covariant spacetime bivector of which it is a part
in an inertial frame in STA and then express the result in a single proper basis of
APS. For Alice the appropriate expansion is

F = 1

2
Fµν

A γ A
µν = 1

4
Fµν

A

(
γ A

µ0γ
A
0ν − γ A

ν0γ
A
0µ

)

= 1

4
Fµν

A

(
σ A

µ σ̃ A
v − σ A

ν σ̃ A
µ

)
.

The same F can be expanded in Bob’s basis F = 1
4 Fµν

B (σ B
µ σ̃ B

ν −σ B
ν σ̃ B

µ ) so that the
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relation between the components seen by Alice and Bob is

Fµν

B

(
σ B

µ σ̃ B
ν −σ B

ν σ̃ B
µ

) = Fµν

A

(
σ A

µ σ̃ A
v − σ A

ν σ̃ A
µ

)
,

where σ B
µ σ̃ B

ν − σ B
ν σ̃ B

µ = L(σ A
µ σ̃ A

v − σ A
ν σ̃ A

µ )L̃ . This leads to the relation

Fµν

B

(
σ A

µ σ̃ A
v − σ A

ν σ̃ A
µ

) = 4L̃FL = L̃ Fµν

A

(
σ A

µ σ̃ A
v − σ A

ν σ̃ A
µ

)
L

under a passive Lorentz rotation. With the identification (41), in APS this becomes

Fµν

B 〈eµēν〉V = L̃ Fµν

A 〈eµēν〉VL (42)

Thus, whereas every observer sees the proper acceleration or (for inertial ob-
servers sharing a common spacetime origin) the position as a real paravector in
APS, the boosted electric field becomes a mixture of real and imaginary vectors,
representing the electric and magnetic fields seen by a different observer. Vectors
transform differently depending on what (if any) type of covariant object they
belong to. The ability to identify the type of covariant object being transformed
is essential in establishing the correct transformations between the measurables
(scalar coefficients) for different observers, and the use of covariant objects such
as spacetime vectors and bivectors is also important for simplifying relations and
bringing out the geometry and relativistic symmetries of the problem. In STA,
covariant objects are generally homogenous k-vectors. In APS, homogeneous k-
vectors are generally not covariant. Instead, it is the paravectors and multiparavec-
tors that provide the covariant formulation. Their utility is based on the relative
formulation of APS, discussed in the next Section.

5. RELATIVE APS

The formulation of relativity in absolute APS depends on the identification
of the proper paravector basis and hermitian conjugation for each observer. Thus,
Alice uses the basis {σ A

µ }, which is real under her conjugation operator †A, whereas
Bob uses a different proper basis {σ B

µ } with the corresponding operator †B. How-
ever, as seen earlier, to relate Alice’s and Bob’s measurables such as the scalar
coefficients rµ

A and rµ

B , we use transformations (38) that entail only one proper
basis for both observers. In (38) we used Alice’s proper basis and conjugation, but
we would obtain the same results by using Bob’s proper basis or, in fact, the proper
basis of any inertial observer together with that observer’s proper conjugation.

To see this, replace σ A
µ by L̃CAσ C

µ LCA in order to express the result in Carol’s
proper basis {σ C

µ }. Here, LCA is the Lorentz rotor for the transformation from Alice
to Carol. The passive transformation in (38), for example, becomes

rA → rµ

B L̃CAσ C
µ LCA = r ν

A L̃ L̃CAσ C
ν LCA L̃†A (43)
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which since LCA L̃CA = 1 and γ C
0 = LCAγ A

0 L̃CA, is equivalent to

rµ

B σ C
µ = r ν

ALCA L̃ L̃CAσ C
ν LCA L̃†A L̃CA

= r ν
ALCA L̃ L̃CAσ C

ν L̃CAγ A
0 Lγ A

0 L̃CA

= r ν
ALCA L̃ L̃CAσ C

ν γ C
0 LCAL L̃CAγ C

0

= r ν
A L̃ ′σ C

ν L̃ ′†C, (44)

where L ′ = LCAL L̃CA is the transformation from Alice to Bob as seen by Carol
(Baylis, 1999). In the special case that Carol shares Alice’s inertial frame, LCA = 1,
whereas if Carol and Bob share the same frame, LCA = L .

The key point is that the transformation (44) of measurables has exactly the
same form as the passive transformation in (38). The same result can be readily
verified for the other transformations (38) of measurables. The transformations are
the same no matter which inertial observer is used for the mapping of APS to STA+

and for the definition of hermitian conjugation in STA+. Although the relation of
absolute APS to STA+ requires separate mappings and a separate hermitian conju-
gation for each inertial observer, this may be considered an artifact of the absolute
approach in STA, from which the absolute version of APS was originally derived
(Sobczyk, 1981a). Within relative APS it makes no difference which inertial ob-
server is chosen; only one proper conjugation and one proper (relative) basis {eµ}
are needed, and these can be associated with any inertial observer. The result can
also be described as choosing one absolute frame in STA as the observer frame.
Since all inertial frames are equivalent, any inertial observer can be assigned to
this frame. Relative APS thus incorporates the basic principle of relativity that all
inertial observers are equivalent and that only the relative motion and orientation
of frames is physically significant.

When we organize the Lorentz transformations as in (38) to compute the
measurables, such as the scalar components of a paravector rA, we find the trans-
formations of a spacetime vector, even in the special case when rA = eµ. We need
to understand what it means for eµ = σ A

µ = γ A
µ γ A

0 , a bivector in STA+, to trans-
form as a spacetime vector rather than as a bivector as in (35). The paravector
transformation of eµ can be expressed in STA as

eµ → LeµL†A = Lγ A
µ γ A

0 L†A = (
Lγ A

µ L̃
)
γ A

0 , (45)

where we have employed Definition (22) of Alice’s proper conjugation. The par-
avector basis elements eµ are defined to be even elements of STA, and each involves
the product of vectors from two absolute STA frames. The paravector transforma-
tion (45) transforms only one of the frames. The result helps to clarify the roles
of the two factors: the first factor γ A

µ gives the STA frame in which the observed
object property is expanded, and the second factor γ A

0 gives the absolute proper
velocity of the observer. The two factors generally transform differently, as in the
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paravector transformation (45). The product of the two frame vectors gives the first
relative to the second. An observer will normally choose a proper basis in which
the object and observer frames are the same, but this is not necessary; she may
also choose an object frame in relative motion. In all cases, in the relative version
of APS the paravector basis elements are relative to the observer.

To obtain the transformation for spacetime bivectors from that for paravectors,
(45), we form a product of two paravectors and transform it:

eµ = eµē0 → LeµL†(Le0L†) = Leµē0 L̄.

This is equivalent to the spacetime bivector transformation (35) of σ A
µ . Of course

e0 = 1, but it is often convenient to add factors of e0 or ē0 to display the correct
covariant behavior.

To summarize, in relative APS, spacetime vectors are covariantly represented
by real paravectors. For example, the energy-momentum paravector of a particle
is p = µ = E + p. Multiparavectors of higher grade can be formed to represent
other covariant geometrical objects, namely spacetime planes, hypersurfaces, and
volumes. Simple Lorentz rotations of paravectors have the form (17) where L is the
exponential of a biparavector representing the plane of rotation. Since as discussed
earlier, the spacetime vectors represented by paravectors in APS are all relative
to the observer, a single Lorentz rotation can equally well represent an active
transformation of the observed spacetime vector, the inverse passive transformation
of the observer, or some combination thereof. In the passive case, the spacetime
vector p can be treated as invariant with respect to one observer, say Alice, and
the transformation derived by expressing Bob’s frame relative to Alice. Thus

pA = pµ

Aeµ = pν
Buν ,

where uµ = LeµL† is Bob’s frame as seen by Alice. This gives pν
B =

pµ

A{〈eµ L̄†ēν L̄}〉S , which is exactly the same relation as found from the trans-
formation (17).

Multiparavectors of grades 0 through 4 form linear subspaces of the algebra.
Grade-0 paravectors are the same real scalars as grade-0 vectors, but covariantly
they model spacetime scalars, which are invariant under Lorentz transformations.
Grade-1 paravectors model spacetime vectors and form the four-dimensional par-
avector space that is also the direct sum of scalar and vector spaces. The bipar-
avectors model spacetime planes and form a six-dimensional subspace from the
direct sum of vector and bivector spaces. The four-dimensional subspace of tripar-
avectors, which model hypersurfaces in spacetime, is the direct sum of bivector
and trivector spaces. Finally, the paravector volume element, which models the
spacetime pseudoscalar, also serves as the vector volume element:

e0ē1e2ē3= e1e2e3 = i.
The split of any paravector, biparavector or triparavector into its multivector parts
is a space/time split in APS.
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6. DISCUSSION

The measurement of a physical vector or multivector depends both on the
vectors of the physical system to be measured and on the commoving frame of the
observer. STA represents both the object to be measured and the observer in terms
of abstract absolute frames, but the measurables are components of the object
vectors on the basis vectors of the observer frame. These measurables appear as
even elements of STA, involving products of vectors of the observed system with
the frame vectors of the observer. If we consider only a single observer, we can
map the elements of STA+ onto those of APS in such a way that the basis elements
eµ of APS are just proper relative basis elements σµ = γµγ0 of the observer.
Persistent spatial vectors of APS then correspond to time-like bivectors of STA,
and hermitian conjugation, which gives reversion in APS, is defined using the
proper velocity of the observer. The result is that paravectors in APS are always
given relative to the observer. Only such relative paravectors and their products
can be measured, and this is precisely what is computed in APS. The additional
flexibility provided by STA, namely to compute absolute objects and observer
frames independently, although at times conceptually appealing, is never needed
in physical measurements. This is the reason that APS can represent any physical
process as well as STA.

When there are two or more observers, they generally determine distinct val-
ues of the measurables, and an important goal of any relativistic formalism is to
relate such values. In the absolute version of APS, the proper paravector basis {eµ},
as well as the proper hermitian conjugation, depends on the observer and is iden-
tified with an absolute frame in STA+. It is the observer’s own proper conjugation
operator that tells her which parts of spacetime bivectors are her vectors and which
are her bivectors. Lorentz boosts between different observers mix spatial vectors
and bivectors, all of which lie in the six-dimensional space of spacetime bivectors
of STA+. Such mixing explains why boosts of persistent real vectors, such as the
electric field, induce an observed magnetic field. A similar transformation applies
to each observer’s proper basis vectors when these are treated as persistent vectors.
While the observer dependence of hermitian conjugation means that each observer
sees her own basis vectors as real, she may find another observer’s persistent basis
vectors to be complex.

However, a different transformation applies to spacetime vectors such as
acceleration. There the separate conjugations applied by the two observers ensure
that the pure spatial vector seen by one observer remains real for the other and
that a scalar part is generated. Thus, two distinct boost transformations for vectors
ensue, one for persistent vectors such as the electric field giving a complex vector,
and the other for instantaneous spacetime vectors such as the proper acceleration
giving a real paravector. The covariant nature of the object must be recognized in
order to know which transformation to apply.
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To establish explicit transformations of the measurable coefficients, we can
write the transformations between observers in terms of a proper basis of a single
observer. We then find that the transformations do not depend on which observer’s
proper basis and conjugation are used. A single proper basis and conjugation
(reversion) operation in APS can in fact be used to relate all inertial observers,
even though they have different absolute frames in STA. This leads to the relative
APS approach, in which all inertial observers share a single conjugation and a single
proper basis. It is consistent with the principle of relativity that all inertial frames are
equivalent and only relative motion and orientation of frames matters. The different
covariant behavior of the proper acceleration and the electric field corresponds to
the difference between spacetime vectors and spacetime bivectors, and in relative
APS these are represented by real paravectors and biparavectors, respectively.
APS can be interpreted both in terms of spatial vectors and their products, and in
covariant terms, with Minkowski vectors of spacetime. The absolute version of
APS emphasizes the first and the relative version the second. In both cases, one
clearly identifies the elements of APS with measurables in STA+, and although in
the presence of more than one observer the two versions invoke different mappings
to STA+, we have shown them both to be two different approaches within a single
coherent geometric algebra, namely APS.

The ability of APS to model relativistic processes as faithfully as STA, even
though as a vector space it has only half the number of independent elements,
is due mainly to the additional structure required by the absolute-frame repre-
sentation of relativity in STA. APS, in contrast, does not model non-observable
absolute frames but concentrates instead on measurable properties relative to an
observer. A characteristic of the APS approach that also contributes to its effi-
ciency is the double role of vector grades. Thus, a scalar might be a Lorentz
invariant or the time component of a paravector, and a vector might be part
of a paravector or part of a biparavector. In this regard, APS models relativis-
tic quantities as humans commonly do. For example, the mass of a particle is
both the Lorentz invariant length of its momentum and the time component (in
units with c = 1) of the momentum in its rest frame. This is naturally expressed
in APS, where m = me0 is the same object in both roles, whereas in STA the
roles are played by distinct elements: m �= mγ0. This feature may be considered
an extension of a basic attraction of working with geometric algebras instead
of with separate vector spaces: in the algebra there is one zero element, and
one does not need to distinguish the zero scalar from the zero vector or zero
bivector.
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